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Two examples are considered of the direct problem of transonic gas flow in the
formulation of F, I, Frankl': the problem of flow through a Laval nozzle with
nearly parallel walls, and the problem of flow past a symmetric wedge-like pro-
file in a sonic gas stream, Calculation of the flow in the first approximation is
reduced to a boundary-value problem for a second.order equation of mixed type,
The boundary~value problem is in turn transformed to a singular integral equation
with kernel of Cauchy type, The solution of the equation is sought by a method
of successive approximations,

A condition is found that permits determination of the flux in the case of flow
through a Laval nozzle, or the coefficient for the singular solution in the case of
sonic gas flow past a profile,

The presence of nonlinear terms in the equations of transonic gas flow leads to
great difficulties in the solution of the direct problem (the problem of finding
the flow in a region having given boundaries),

In the case of plane parallel flow it is possible to transform the nonlinear equa~
tions in the flow plane into linear ones in the plane of the velocity hodograph,
However the boundary-value problem can be posed in the hodograph plane only
for a limited number of flows, with boundaries on which a relation between the
velocity components is known in advance,

A, A, Nikol"skii [1] proposed a method of solving the boundary-value problem
with boundaries that differ only slightly from those for which the transformation
into the hodograph plane is known, As a result one obtains a boundary~value
problem with linear boundary conditions for a linear second-order differential
equation of mixed type,

The method of A, A, Nikol'skii was further developed in the work of F, I, Frankl’
[2, 3], where it was applied to the solution of the direct problem of the Laval
nozzle, It was shown that the flux through a nozzle with given walls is essentially
undetermined, and can be prescribed in an arbitrary way,

In his subsequent work [4, 5] F, I, Frankl® discovered an undetermined coefficient
also in the problem of sonic gas flow past a profile, In this case the solution is
determined only to within an arbitrary multiplicative constant at the point of hodo:
graph plane corresponding to the region infinitely remote from the body,

In these same papers the premise was advanced that the solution of the direct
problem of transonic flow must satisfy some supplementary conditions, having a
physical basis, which serve for finding the undetermined parameters in the problem

The question of uniqueness of the flux through a given Laval nozzle was con-
sidered also in [6], in which uniqueness of flux was proved under the condition of
conservation of the asymptotic type of flow at the center of the nozzle,

1, Formulation of problem, Consider a known plane parallel ransonic flow
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of ideal gas in a region D having boundaries d,and d,. As d,, d, we may choose the
upper and lower walls of a'Laval nozzle, or the upper and lower surfaces of a profile in
the stream,

If the transformation of the curves d; and d, into the hodograph plane is known, the
flow field can be calculated as the solution of the corresponding boundary-value problem

for the Tricomi equation MPoo - Py = O 1.1

Here 1 is the stream function, 6 the angle of inclination of the velocity vector, and 1
the variable of Frank1' [7],

Following the paper [2], we formulate the direct problem of finding the flow in a region
E with boundaries €, and e, that differ only slightly from d, and ds.

Let the flow in region IJ be given by the relations z = 2, (0, M), ¥ = y, (6, n)
and .y = P, (0, M), where z, ¥ are Cartesian coordinates in the physical plane, Then
the corresponding equations for the unknown flow can be written in the form

z=2a,(8,m) + 82(6,m), y =1y, (8, n) + 8 (6 n
P =1, (8, ) + & (6, 1)
Here § is the variational symbol,

As shown in [2], the flow in region £ can be calculated as the solution of the following
boundary~-value problem in the (0, m) plane: to find the solution of the equation

a (1
%o + o <_Tl_ Xn) =0 (1.2)

assurning on the boundaries d,, d, the values
y = — pwdn, on-d,, y = pwdn, 4+ 8¢ on d, (1.3)

Here p is the density of the gas, w the speed, and §p; are the distances between the
curves d,and e; measured alongthe inner normal to d; (i = 1, 2). The quantity 8¢
appears in the boundary conditions (1, 3) only in the case of nozzle flow, and is equal to
the difference in flux through nozzles E and D.

A proof of theorems of existence and uniqueness of the solution of the boundary~value
problem (1, 2), (1. 3) can be found in [8, 9],

The quantities 8z, Oy and &) are given by the equations

cos 6 sin © sin O cos®
bz = = %o+ ooy *w Oy = —5 Yo — S —am "o
P =% — T—%}W L M — Mach number (1.4)

The relations (1, 4) are simplified in the transonic approximation, and take the form

8z = putiXer 8y = puty (v + 1), &Y= (v 4+ )P0, (1.5)

Here p,and a,are the critical values of density and sound speed, and 7y is the adiabatic
exponent,

Let the flow in region D) be represented by the outflow of a stream from an infinite
symmetric container with straight walls that make a certain angle Q, with the axis of
symmetry CO (Fig.1). This is a classical problem that has been considered by many
authors (see [10], for example), The mapping of region D) into the (8, 1) hodograph
plane is shown in Fig, 2, By virtue of symmetry we can restrict attention only to the
upper half of the flow field,
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The streamline CQ passing through the axis is chosen as the boundary d, , and the
upper wall of the nozzle as d,. On the line OB the flow reaches the speed of sound .
Y In the region contained between the sonic line
OB and the limiting characteristic 04 appears
an expansion flow with center at the point A = B,
which is represented by the segment AB of a char-
acteristic in the hodograph plane,

Calculation of the flow reduces to the boundary-

I

%
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1
4=4

¢ > value problem of Eq, (1.1) with the boundary con~
/] P
£ ; ditions % =0 ondy, ¥ =g onds
/- We now consider the flow through the symmetric-
al Laval nozzle E (Fig,1), We assume that the

boundary e, coincides with d;,and e, is given by
the deviation §n from d,. At the point 4 = B
Fig. 1 the values of §p are measured in the direction of
the normal to the velocity vector,
The flow in region .E is calculated as the solution of the boundary-value problem
(1.2), (1. 3) with §n, = 0 and én, = 6n.
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We now consider the problem of symmetric flow of a sonic stream of gas past a wedge-
like profile, We take as the basic flow that past a wedge at zero angle of attack (Fig,
3). The boundaries d,and d, are represented by the two branches of the single stream-
line passing through the axis of symmetry CQ and the sides of the wedge, The image
of region D in the hodograph plane coincides with that already considered in Fig, 2.
The characteristic points in this flow are designated just as in the previous case, The
semi-vertex angle of the wedge is equal to 6.

Calculation of the flow reduces to the determination of a function 1 (6, 1) that
satisfies Eq, (1.1) and the boundary conditions P o= 0 on d,and d,. In addition, at the
point O (8 =0, n == () corresponding to infinity in the flow plane, the solution
P (8, m) must possess the singularity of Frankl® [10, 11], In other words, the stream
function for the flow in region D must have the form
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F(8,m) =r*al(3t — 1) (¢ + 1) — (3t + 1) (¢ — 1)%]
rP=0*+4, 0% =0/

The function Y, is a bounded continuous solution of Eq, (1,1) and satisfies the follow-
ing boundary conditions:

Y, =0 on d,, Y, =f (8, M) on'd,

We choose the boundaries e,, e, as shown in Fig, 3, The stream function for the flow
in region £ differs from 1 by the amount &, which according to (1.6) must have the
form &\p = &, — ef. Hence, considering the relation between'&p and ), we find

x (6, m) = % (8, m) — 8cg (6, m)

where

where

g8, m) = rs (e + 1) — (¢ — 1)4], 8¢ = const

The problem is thus reduced to the determination-of a continuous bounded solution of
Eq. (1, 2) that satisfies the boundary conditions

% =0 on g, ¥y = pwdn + géc on d,

The constant Oc, like §¢ in the previous case, is an undetermined parameter of the
problem, At the end of this paper we find a condition that permits §¢ or §q to be deter~
mined for a given On,

2. Reduction to boundary-value problem with generalized equa-
tion, InEq, (1.2) we transform to the new variables z = 20, y = 1? sgn 1 and
Z (z, y) = % (0, n). It then takes the form

Sgny |yt Zyx + 2y, =0 (2.1)

We will, however, consider an equation of the more general form
gy |Y|™ Zex+ 2y =0 (—1<m< + ) (2.2)
In the special case m = 1 we have the Tricomi equation (1,1);for m = — Y, Eq,

(2.2) agrees with (2.1),

Thus the examples under consideration of direct problems of transonic flow can, with~-
out loss of generality, be reduced to the following problem : to find a continuous bounded
solution of Eq. (2,2) that satisfies the boundary conditions

Z (01 y) = (pl (S)
ZUp) =w() (5= g ¥9?)  for y>0 2.3)

Z (z, y) =V () on the characteristic A =0, 0 << p < 1

Here @, (s), @, (s) and ¢ (pn) are given functions, and A, | are the characteristic
coordinates 2 s
|/,(m+2)‘ p==z+ s (— y)/(m+2)
Henceforth, to facilitate the calculation, we will assume that ¢, (0)= () 0) =
= P (0) = 0. This assumption does not limit the generality of the reasonong, since

2
A=x—m(—y)
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instead of Z (z, Y¥) we can consider a solution of the form
Z(z,y) —[Z2(1,0) — Z (0, 0))z—Z(0,0)
On transition through the parabolic line ¥ = 0 the condition must be satisfied that
Z,(z, +0) =sgamZ,(z, —0) (2.4)

In the case m = — 1/, the relation (2, 4) arises from continuity of the quantity &y:
on transition through the sonic line, and for m = 1 it is the usual condition of Tricomi
[12]. In addition, the derivative Zy (z, y) must be bounded in the flow region, since
&8¢ is bounded in D,

8, Solution in elliptic region, Let the value of the derivative Z, (z, 0)=
= v (x) be known, We pose the following boundary-value problem in the elliptic plane:
to find a solution of Eq, (2,2) that assumes in the half-strip D* (0 < 2 << 1, ¥y > 0)
the boundary values

2O,y =908, ZU,y) =g (), Z,(z, 0) =~ (2) (3.1)
To construct the function Z (z, y) we use a particular solution of Eq, (2,2) of the
for . -
om sB Jpy, (5) e, (2 +s%) B (B = '2—(_5%)

where J, () is the Bessel function of order v.
We consider the expression

o 1
Z (@, g) = "7" { Joy, (ts) (a1 (t) € + as () ") 02 + Vo)V @ wina 3.2
1] 1]

oo
Ve y= 3 (@ +z—tf +6T° —[@n—z—1)"+ 51}

Nn=—0o0

The function Z (z, y) is a solution of Eq, (2.2) for any a, (1), a5 (#), b (#) and satisfies
the conditions

Z(0,y) =" | T (t5) las (8) +aa(0)] dt
[

Z(,y) =5 Joy, (t) lar ()¢ + an (@) €] dt (3.3)
[}
T
Zy (2, 0)=—b—§‘x‘)'r k=[2(1—23)]w—4—1;r—(g%

Comparing expressions (3.1) and (3, 3) anad using the inversion formula for the Hankel
integral transform, we find

0

0y ()€ + a () 6™ = ERLE=D L 1A Ty, () d +
0

oc

At (o 2Ty @l O =—hvD) (3
0

Substituting the relation (3, 4) into (3, 2) and interchanging the order of integration, we
obtain
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¢

r (3.5)
Z@y={le0U@y)+anU u~aan&—kj(any»d

Uz, y; t) = "8 > R heh szfi;f D Jou, (M) Joy, (hs) dh - (3.6)
o

Let Z (z, 0) = 7t (z) ; then from Eq. (3. 5) we have

1
T(2)=—k[v(®)V(z, 0; t)dt + D (z) (3.7)
D)= [ [0 (O Uz, 0; )+ () UL —=z, 0; t)] dt (3.8)

We extend the definition of v () as an odd periodic function in the interval — o0 <
K z << + oo, and then the relation (3. 7) can be written in the form

+
@) =—k | v()|z—t[P+ 0@ (3.9)
In what follows the value of the derivative @’ (0) is required, From Egs, (3. 8) and
(3. 6) we obtain o
@ (0) = [ (9. () Ur () — 0 () U (1)) dt (3.10)
0
Uy (t) =lim U, (z, 0; t) = — 2ot/ § AP GEB AT 5 o, (M)
P T e TE Y T T TR Ot Ao (
. . C 9B z‘/zﬂi AP
Uat) =lim U (=, 0; 1) = — 55 +1/’)§ e Toa, (M) b

4, Solution in hyperbolic region, We consider the following problem in
the hyperbolic half-plane: to find a solution of Eq, (2, 2) valid in the characteristic wi-
angle D= (A =0, A ==p, p = 1) and satisfying conditions

Z@©, p=v(@), Z(0,0=0 lLmZ,A, p)=v(=)

A suitable form of such a solution is found in paper [13] (see Chapter 5, Eqs, (4,15)
(4.16) and (4, 25)

Iy A
Z (M, p) = 2ksi v(t)dt 2 cos nf ¥ (1) dv
(& ) sm:rrl3§ o h—oF T TA—® g no—aF T

i
| 1 ¥ (1) dv a8
- F<1—3>§ P ¥ (1) =" D% (7) (4.1)

Here D= f (z) is the integral of f (2) of the fractional order @ if @ <0

apn 40 f@ar
D (@) = iy 7

L t)l+a.
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or the derivative of the integral of f (%) of fractional order @ if @ > 0

D*f(z) = di:; D" (z)  pp—1<a<n)

Equation (4. 1) was obtained [13] for the case —1/, < m < 0, but it is valid also
for m > 0.
On the basis of (4,1) we can calculate the quantity
Zy (o w) = [2(1 — 21 (p — N (Zy — Z,)

We introduce the operators

2
. _ 1+28 f(x)de 4.2
LMwfE))=@—M § [(»—7) A—T)]'*? N
@
. __ _ 1428 f(‘l')df
12 [;"1 l‘n f(T)] - (l‘l‘ ;") § {(p,—'l,’) (‘V—‘)')l].‘”a
Then
Z, (A ) =K dy A, g V()] + Ry {208 73T, (A, s ¥ (0] — Lo (A, s ¥ (9]}
2 . kT :
b= gy s, k=0 -9

If f(t) = 19, the integrals (4,2) are hypergeometric, Carrying out the substitution
T = At and correspondingly T = p — (p — A) ¢, we find

JiMp; =B +a, —B)p A PF(—B,a—28;1—B+a;Mp)
Iy (A p; ©%) = B(—B, —B)p°F (—a, —B; — 281 —h/p) = (4.4)
=B@B—a, —B)p*APF (=B, a— 281 —B4a; Mp) +
+B(x—B, —B)pF(—B, —a;1 +B—a; Mjp) =
= sinnacse [ (2 — B)1 I, [A, i 7*] + B (@ —B, — B) p* (1 + O (Mmw)1
Let P” () be bounded and integrable in the interval (0, 1); then for —Y/, < B << U

we obtain after simple transformations

dt - f(0) 2 1B " 8
¥ (1) = D P (r) = ‘ﬁ(g LTB) + 1Dy (1) = 1 4 0 (V) (4.5)
The relations (4,4) and (4, 5) show that I;[A, p; ¥ ()] (i = 1, 2) is continuous and
bounded in the region D~ except for the characteristic A = 0, where it tends to infinity
as A8, For o = 28 we have

sin nna esc [w{a — B)] = 2 cos nP

Therefore the expression in parentheses in Eq, (4, 4) contains no terms with negative
powers of A, and is a continuous bounded function in the entire region D,

Thus if v (z) is a continuous bounded function in the interval [0, 1], Z, (A, pis
continuous and bounded in D~,including the boundaries,
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Let y =0(A=p = 2)and Z (A, p) = 7 (z). Then Eq. (4.1) assumes the form
1 (z) = ks D¥ v (2) 4- G (2) (4.6)

2r(1 _
ky = 2ksinmBl (1 —28), G(z)= Tﬁ}% D¥¥ ()

5., Reduction of boundary-value problem to singular {ntegral
equation, Comparing the expression for T (z) from Egs, (4. 6) and (3. 9), and also
taking account of the condition (2. 4), we obtain an equation for the determination of
v (z) +oo

D¥ (@) +-ky [ v(t)|z—t[®dt = kyp(a) (5.1)

-—00

2|
b= TSR k=2, @) =0@) 6@

We apply the operator D128 to the relation (5,1). Taking account of the fact that
DeD-a f (x) = f (x) . and calculating the expression (cf, [13], Chapter V, Sect, 6)

b
- - t -2 j(t)ydt
b’ 2BS 102 =t dt = g )+ r(%)S( =

we obtain

V@4 (L) 20d _ o) (5.2)

t—=zx

-0

where
cos nf

= 7 (sgnp T sin ) g(z) =pD1—29(p(x),. po=

We set v (z) = 2?8y (z) and g(r) = 2®f (), then by virtue of the periodicity
of the function v (z) we obtain from (5, 2)

AT (2B)

1(2) +» 5 X () K (2, t)dt = f (2) (5.3)

-+

+ 2 [(Zn-i—t) (2n +1t+:z: +2n +1t—z) _(2nf—t\)23(2n—1t+z +2n—1t—:c>]

Thus the solution of the boundary~value problem (2. 2), (2. 3), (2. 5) is constructed if
we succeed in finding a function ) (z) that satisfies the singular integral equation (5.3),
with kernel of Cauchy type, we will solve Eq, (5. 3) by the method proposed in [14] for
the case when (2,2) is the Tricomi equation (§ = /g). We write Eq, (5. 3) in the form

1

1 (@) +2 | x () Koz, tydt = r () (5.4)
1]

1
r@=1@—A[x(0)AK (z, )dt, AK(z,t)=K (2. 1) — Ko (z, 1)
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Koz t)= 2 (2n+t+x + 2n+t—”>

n=—oo

Using the expansion of ctg z in elementary fractions, we represent K (z, #) as
Ky (z, £) = Yo7 [cbg Yo (t — ) + otg Yymt (¢ + )] =
= (sin? -2 ¢ —sin? — x o smz—t
- 2 2 r
Substitution of the variables

y=sin2%x, ‘r=sin2—g—-t, %(x)=p), r@=%y (695

permits (5,4) to be reduced to the characteristic equation
(y)+x§ﬁ P ) (5.6)

Applying the theory of singular integral equations [15], we write the solution of equation
(5.6)

u(y)—cos*ue{w(y)—xg[ﬁi_zm 2OEL L 47—y 6D

0 = —nlarctg nx =1/, (28 — sgn B), A = const

Restoring the previous variables (5, 5) we obtain

X () = N[r(z)]—coszne[ (z) — xg(tigg-f//:T“;)”Ko(x, tr(t)dt] (5.8)
0

The constant A from Eq. (5. 7) is here chosen equal to zero in order that ¥ (z) be inte-
grable in the interval [0, 1].
We introduce the operator

Py(z)] =f(z) —A j 1 (8) AK (z, t) dt (5.9)

Then the relation (5, 8) is written in the form
x (z) = N [P [% (2)]] (5.10)
From (5,10) we can find a Fredholm equation of the second kind for % (%)

x(z) -+ 1) T (@, tydt = N [f (2)] (5.11)
F'(z,t) = N[AK (z, t)] =

= cost 0 [AK (2, 1) _AS(%Z_;: ) Ko (z, 7) AK (, t) d1]

The kemel I' (2, ?) has a complicated structure, so we determine X () by applying a
method of successive approximations, We determine the successive functions

@1 (X (@) E L2 (0, 1))
by means of the relations [14]
NE=NPON=N[@] %n@)=N[P[Kna1()]] (=2,3..) (512)
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it can be shown that the sequence (5.12) converges to the solution of Eq, (5,11), From
functional analysis [16] it is known that for the convergence of the sequence { ¥, () n=y
it is necessary and sufficient that

im |y, (@) — ¥m ()| =

n, m—oo
Here | f(2)| is the norm of the function f(z)

@)1= [ a]"

1

¥ (&) — fn-1(2) = — A f [An-1(2) — Yne (I T (2, t) dt =

9

We form the expression

1
= — AN { [Xnt (8) — %nea (9] AK (2, 2) dt
i)

Hence
[%n (2) = An1 (2) [ < @[ %ng (2) — Hnp (@) [ a2 %y ()] (5.13)
h
where a=|A[[N[1]|max [AK (z,1)]| (5.14)
0, i1
Assuming for definiteness that n > m, we find
Do —Xnl=] 3 —%n|< D 1 —teal< 3 1% — Yacsl (5:15)
k==m-}1 kE=m-}1 k==m<1

Using (5.14) and (5,13} we can obtain the bound
m
[t (2) — Yns @< 75 1% ()]

Thus convergence of the sequence {Xn (@), is proved if we show that a < 1.
From Eq, (5. 8) we have

1
— tg tfa nt -
N[1] =cos*nb [1 7\.§< > K,(z, t) dt]

tgYanz

o 8
= coszﬂe{i — lg{_g—*g;;} r‘ij} - (tgc;:i}”

The singular integral in the last expression is tabulated (see [17], Eq, 3,228,1), Knowing

the function NV [1], we calculated its norm
1

dt Y cos nd =
| N [11] = cos n [§ (tg%m)qa] = (5.16)

We consider the expression

o (@n— OB [2n — 0B — 28] (2n + OB [2n 4 ) — 1)
AK (z, 1) =2 2 {( @n—if—2° - (@n + 1) — 22 }

==}

It is not difficult to convince oneself that AK (z, /) is a continuous bounded function
in the square 0 <C z, £<C 4, and also AK (z,0) = AK (2, 1) = 0,and | AK (=, 1) |
attains its maximum on the line x = 1 at the point ¢t = 1
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max | AK (z, t)|—-hm|AK(1 t)| = 4B, o<z t<<t  (5.47)

0Sx,iK1
Equations (5, 15), (5. 16) and (5,17) permit calculation of the quantity @

cosn® _4p) . snm™® 0<o<t
a=4lkﬁ\m—2(1 46) 7t (cos 2m0)/* ls

From the last relation it is easy to verify that a < 1. Consequently, the sequence (5,12)
converges to the solution of Eq, (5,11).
In the first approximation for ¥ (z) we have the expression

v, (z) = cos?nb {g (=) — —"2i§ (zT)’B (t—gij:—;‘-i—)a [ctg —;- (t—=z)+
0

+otg - (t+2)|gWad} o =B—asenp (5.18)

For 0 < B < Yy the funcnon vy () is infinite of order 1/, — P at the point z = 1.
In the case —1/, << B < 0 we have

- 2r(4 +p
£ (@) = pD"P ¢ (@) = WDV (D (8) — G (@) = [ D0 (@) — T gy Y@
Using the equation

r 0 1 »
D@ () = -f(if%’ﬁ) 2 4+ D¥ (2)
and the relation (4, 5), we obtain

g (z) = I‘(—1+2_B) [ (0) — 29’ (0)] 2% +- O (z1+}) (5.19)

Thus for g (z) to be bounded at the point z = 0, the condition must be satisfied that
O 0) —29'(0) =0 (5.20)

The quantity @’ (0) is given by Eq, (3.10), The singular integral in (5,18) can, for
— Yy < B<<0,be expressed in the form

B. 1
ZzB‘/’S (tg ) g (t)dt 4 0 (')
0
it is bounded at the point z = 0 if

§ r’"( )""" g(t)dt=0 (5.21)

Thus if the boundary values (2, 3) satisfy the conditions (5, 20) and (5, 21), then v (z) &
& (IO, 1]. From Eq, (4. 3) it follows that in this case the function Z, (z, y) is bounded
in the region of solution of the problem, Consequently, the quantity & is continuous
and bounded in the flow region,

The relations (5. 20) and (5, 21) serve to determine the quantity §¢q or Sc. At the
same time they impose no restrictions on the form of the boundary ¢,, since the latter
is determined to within a shift relative to dy in the direction of the z -axis, In other
words, n = 6n‘(z + €). The constant ¢ is determined together with 8¢ or 8¢ from
the conditions (5,20) and (5. 21).

The author thanks S, V, Fal’kovich for guidance and continual interest,
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