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Two examples are considered of the direct problem of transonic gas flow in the 
formulation of F. I. Frankl’: the problem of flow through a Lava1 nozzle with 

nearly parallel walls, and the problem of flow past a symmetric wedge-like pro- 
file in a sonic gas stream. Calculation of the flow in the first approximation is 

reduced to a boundary-value problem for a second-order equation of mixed type. 

The boundary-value problem is in turn transformed to a singular integral equation 

with kernel of Cauchy type. The solution of the equation is sought by a method 

of successive approximations. 
A condition is found that permits determination of the flux in the case of flow 

through a Lava1 nozzle, or the coefficient for the singular solution in the case of 

sonic gas flow past a profile. 
The presence of nonlinear terms in the equations of transonic gas flow leads to 

great difficulties in the solution of the direct problem (the problem of finding 

the flow in a region having given boundaries). 
In the case of plane parallel flow it is possible to transform the nonlinear equa- 

tions in the flow plane into linear ones in the plane of the velocity hodograph. 
However the boundary-value problem can be posed in the hodograph plane only 
for a limited number of flows, with boundaries on which a relation between the 

velocity components is known in advance. 
A. A. Nikol’skli [l] proposed a method of solving the boundary-value problem 

with boundaries that differ only slightly from those for which the transformation 
into the hodograph plane is known. As a result one obtains a boundary-value 
problem with linear boundary conditions for a linear second-order differential 

equation of mixed type. 

The method of A. A. Nikol’skii was further developed in the work of F. I. Frankl’ 

[2, 33, where it was applied to the solution of the direct problem of the Lava1 
nozzle. It was shown that the flux through a nozzle with given walls is essentially 
undetermined, and can be prescribed in an arbitrary way. 

In his subsequent work [4, 51 F. I. Frankl’ discovered an undetermined coefficient 
also in the problem of sonic gas flow past a profile. In this case the solution is 
determined only to within an arbitrary multiplicative constant at the point of hodo. 

graph plane corresponding to the region infinitely remote from the body. 
In these same papers the premise was advanced that the solution of the direct 

problem of transonic flow must satisfy some supplementary conditions, having a 

physical basis, which serve for finding the undetermined parameters in the problem 
The question of uniqueness of the flux through a given Lava1 nozzle was con- 

sidered also in [6]. in which uniqueness of flux was proved under the condition of 
conservation of the asymptotic type of floi at the center of the nozzle. 

1. Formulation of ptoblam. Consider a known plane parallel transonic flow 
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of ideal gas in a region D having boundaries &and 4. As 4, dz we may choose the 
upper and lower walls of a’ Lava1 nozzle, or the upper and lower surfaces of a profile in 
the stream. 

If the transformation of the curves dl and ds into the hodograph plane is known, the 

flow field can be calculated as the solution of the corresponding boundary-value problem 
for the Tricomi equation 

V!,ee + %l7l = 0 (1.1) 

Here 4 is the stream function, 8 the angle of inclination of the velocity vector, and q 
the variable of Frankl’ [7]. 

Following the paper @I, we formulate the direct problem of finding the flow in a region 

J?Z with boundaries el and e, that differ only slightly from diand ds. 

Let the flow in region D be given by the relations z = z. (0, q), y = y, (8, 11) 

and .$ = tjo (0, q), where 5, y are Cartesian coordinates in the physical plane. Then 

the corresponding equations for the unknown flow can be written in the form 

5 = ro 03, r)) + ax (0, ~1, Y = Y, (0, Y) + 6~ (0, S) 

* = q. (0, 1) + W (0, q) 

Here 6 is the variational symbol. 
As shown in [2], the flow in region E can be calculated as the solution of the following 

boundary-value problem in the (0, T$ plane : to find the solution of the equation 

(I 4 

assuming on the boundaries d,, d, the values 

x = - pwbn, on-dl, x = pwbn, + 6q on da (1.3) 

Here p is the density of the gas. w the speed, and ani are the distances between the 

curves d, and e, measured along the inner normal to di (i = 1, 2). The quantity 6q 
appears in the boundary conditions (1.3) only in the case of nozzle flow, and is equal to 

the difference in flux through nozzles E and D. 
A proof of theorems of existence and uniqueness of the solution of the boundary-value 

problem (1.2), (1.3) can be found in [8, 91. 
The quantities 6x, 6y and 6$ are given by the equations 

6x = -=$X@ + sin 9 
X 

p(l-W) In’ 
6y = _+!LXo_ co9 0 

p (1 - W) XW 

M - Mach number (1.4) 

The relations (1.4) are simplified in the transonic approximation, and take the form 

6s = p*a*Xe, &y = Q*U* (y + l)-“‘q-‘Xn, sq = (y + l)-“%px, (1.5) 

Here &and a,are the critical values of density and sound speed, and y is the adiabatic 
exponent. 

let the flow in region D be represented by the outflow of a stream from an infinite 
symmetric container with straight walls that make a certain angle (lo with the axis of 

symmetry CO (Fig. 1). This is a classical problem that has been considered by many 
authors (see [lo], for example). The mapping of region D into the (0, tl) hodograph 
plane is shown in Fig. 2. By virtue of symmetry we can restrict attention only to the 
upper half of the flow field. 
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The streamline CO passing through the axis is chosen as the boundary d, , and the 
upper wall of the nozzle as d,. 0n the line OB the flow reaches the speed of sound . 

In the region contained between the sonic line 
OB and the limiting characteristic OA appears 
an expansion flow with center at the point A = B, 
which is represented by the segment AB of a char- 
acteristic in the hodograph plane. 

Calculation of the flow reduces to the boundary- 
value problem of Eq, (I. I) with the boundary con- 
ditions 

9 = 0 on d,, \I! = q on $ 

We now consider the flow through the symmetrlc- 

al Lava1 nozzle E (Fig. 1). We assume that the 
boundary el coincides with &and es is given by 
the deviation Sn from d,. At the point A = B 

Fig, 1 the values of 6n are measured in the direction of 
the normal to the velociry vector. 

The flow in region B is calculated as the solution of the boundary-value problem 
(x.2), (1.3) with en, = 0, and 6na = &n. 

Fig. 2 Fig. 3 

We now consider the problem of symmetric flow of a sonic stream of gas past a wedge- 
like profile. We take as the basic flow that past a wedge at zero angle of attack (Fig. 
3). The boundaries diand d, are represented by the two branches of the single sueam- 
line passing through the axis of symmeq CO and the sides of the wedge. The image 
of region D in the hodograph plane coincides with that already considered in Fig.2. 
The characteristic points in this flow are designated just as in the previous case. The 
semi-vertex angle of the wedge is equal to 6,. 

Calculation of the flow reduces to the determination of a function Q (0, 11) that 
satisfies Eq. (I. 1) and the boundary conditions 9 = 0 on &and dr. In addition, at the 
point 0 (0 = 0, 71 = 0) corresponding to infinity in the Row plane, the solution 
9 (9, ?$ must possess the s~gul~i~ of Frankl’ [IO, 111. In other words. the stream 
function for the flow in region D must have the form 
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where 
! (e, ?I) = r+* [(3t - 1) (t + I)‘/* - (3t + 1) (t - l)‘/a] 

ra = Cl2 + Vs q3, t = O/r 

The function q,r is a bounded continuous solution of Eq. (1.1) and satisfies the follow- 
ing boundary conditions : 

$t = 0 on d,, $r = f (0, rl) on:d2 

We choose the boundaries e,, e, as shown in Fig. 3. The stream function for the flow 

in region E differs from $J by the amount &j, which according to (1.6) must have the 
form SJ, = &$, _ af. Hence, considering the relation between&$ and x, we find 

x ((4 TV) = x1 (4 q) - 6~ (0, q) 

where 
g (e, q) = r-:‘s r(t + I)*/~ - (t _ I)~J, 6c = const 

The problem is thus reduced to the determinationof a continuous bounded solution of 

Eq. (1.2) that satisfies the boundary conditions 

Xl = 0 on 4, xi = pwiin + g6c on d, 

The constant 6c , like 6q in the previous case. is an undetermined parameter of the 

problem. At the end of this paper we find a condition that permits 6c or 6q to be deter- 
mined for a given 6n. 

2. Raduotlon to boundrry-vrlu@ problrm with gonorrlirrd aqua- 
tion. In Eq. (1.2) we transform to the new variables x = 28, y = q” sgn 11 and 
2 (5, I/> = x (0, T$ . It then takes the form 

sgn Y I Y I-+ z,, + z,, = 0 (2.4) 

We will, however, consider an equation of the more general form 

sgn!4Ylm z,, + z,, = 0 (--l<m<+@J) (2.2) 

In the special case m = 1 we have the Tricomi equation (1.1) ; for m = - ‘1s Eq. 
(2.2) agrees with (2.1). 

Thus the examples under consideration of direct problems of transonic flow can, with- 

out loss of generality, be reduced to the following problem : to find a continuous bounded 

solution of Eq. (2.2) that satisfies the boundary conditions 

2 (0, I.4 = 'pl (4 

Z(1, Y) = (P2(4 
( 

2 
s=-y %(m+2) 

m-i-2 J 
for y > 0 (2.3) 

27 (x7 Y) = 4 64 on the characteristic. I. = 0, 0 < p < 1 

Here 'PI b), cps (s) and II, (cl) are given functions, and h, l.k are the characteristic 
coordinates A = x - --& (_ y)“P(m+Q, 11=x+ _-L& (_ y)‘lz(m+s) 

Henceforth, to facilitate the calculation, we will assume that ‘pl (0) = (p2 (0) = 
= I# (0) = 0. This assumption does not limit the generality of the reasonong. since 
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instead of 2 (Z, &!) we can consider a solution of the form 

2 (z, y) - 12 (1,O) - 2 (0, O)] 3 - 2 Kh 0) 

On transition through the parabolic line JJ = 0 the condition must be satisfied that 

2, (5, + 0) = sgll ?n 2, (5, - 0) (2.41 

In the case m = - l/s the relation (2.4) arises from continuity of the quantity i3$ 

on transition through the sonic line, and for m = 1 it is the usual condition of Tricomi 
1125 In addition, the derivative Zr, (2, y) must be bounded in the flow region, since 

6$ is bounded in D. 

8, SOlUtiOfl fn diptiC r@@Oll, let the value of the derivative 2, (5, 0) = 
= Y (5) be known. We pose the following boundary-value problem in the elliptic plane : 
to find a solution of Eq. (2.2) that assumes in the half-strip D+ (0 < x < 1, y > 0) 

the boundary values 

Z(O,y) =rp&), Z&y) =rP&), 2,(x, 0) =y(x) (3.1) 

To construct the function 2 (z, y) we use a particular solution of Eq. (2.2) of the 
form 

PP J&i/, (s) efx, (xa + saP ( P = 2 @“+ 2) ) 
where J, (s) is the Bessel function of order v. 

We consider the expression 

2 (x, y) = PJ Jplls (ts) [a, (t) etx + a2 (t) eDtr] dt + 1 b (t) V (x, y; t) dt (3.2) 
0 0 

+- 

v (2, y; t) = 2 { [ (2n + x - ty + s2p - [ (2n - 3, - ty + @} 
n=--m 

The function 2 (x, y) is a solution of Eq. (2.2) for any al (t), a, (t), b (t) and satisfies 
the conditions 0 

2 (0, y) = ?-a J JP-jlr (ts) [a~ W + a, @)I dt 
0 

2 (1) y) = P+ 1 JP_,,* (ts) [a, (t) e’ + a, (t) em’ 1 dt (3.3) 

Comparing expressions (3.1) and (3.3) and using the inversion formula for the Hankel 
integral transform, we find 

a, (t) efx + u2 (2) emfX = 
tsht(i-x2) 

sh t s 
cpl (A) RP+“a Jp-l,, (th) dh + 

00 

#shts 
+- sht s 

va (A) A?+“’ J&l,* (th) dh, b (t) = - kv (t) (3.4) 
0 

Substituting the relation (3.4) into (3.2) and interchanging the order of integration, we 
obtain 
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Z(z, y) = j&#)U(3, y; t) +‘Pa(t)U(1 
(3.5) 

- 5, y; t)l dt - kjv(t)V(r,y;t)dt 
0 0 

jy (x, y; t) = ,‘I*+ tP+“s \ - Lshh.(i --2) 
sh h 

Jp__,,, (ht) Jp_l,, (As) dh (3.6) cr 
0 

Let 2 (5, 0) = r (x) ; then from Eq. (3.5) we have 

z (x) = - k j v(t) V (x, 0; t) dt + 0 (4 
0 

(3.7) 

Q, (4 = 7 [cpl (t) u (x9 0; t) + 92 (t) u (1 -x, 0; t)] at 
(3.8) 

0 

We extend the definition of v (x) as an odd periodic function in the interval - OO< 
< x & + oo, and then the relation (3.7) can be written in the form 

z(x) = - kTv(t) I 5 - t I-@ + 0 (x) (3.9) 
-m 

In what follows the value of the derivative a’ (0) is required. From Eqs. (3.8) and 
(3.6) we obtain 

0’ (0) = 5 [%W Ul (t) - 92 PI u2 P)ldt (3.10) 
0 

2’/‘P t%+P OD 
U1 (t) = lim U, (x, 0; t) = - r (p + ‘,%) \ h’+“’ cthXJ,+ (At) dh 

x-cl ‘0 

4, Solution in hyparbollc rrgion, We consider the following problem in 

the hyperbolic half-plane : to find a solution of Eq. (2.2) valid in the characteristic tri- 

angle II- (A = 0, 3L = p, p = 1) and satisfying conditions 

2 (0, P.) = ‘II) (I47 2 (0, 0) = 0, lim 2, (h, p) = v (x) 

A suitable form of such a solution is found in paper [ 131 (see Chapter 5, Eqs. (4.15)~ 
(4.16) and (4.25) 

Z(h, p) = 2ksinnpi 
h 

v (t) dz 2 cos np 
c 

Y (t) dt 

; HP--)(h---)lQ + r (1 -P) ‘0 [(p - T) (I. - rp -I- 

+- r(1 
1 iL 

s 
Y (T) dz 

-3) x I@--) (r- @I” ’ 
Y (z) = ,w-b# (z) (4.1) 

Here Dl f (I) is the integral of f (x) of the fractional order a if a < 0 

x f(t)dt 
w4 =-q&s 

0 ( 
z - t)‘+a 
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or the derivative of the integral of f (z) of fractional order a if a > 0 

D”f (5) = $ D”“f (4 +-il<a<n) 

Equation (4.1) was obtained [13] for the case -l/s < n < 0, but it is valid also 
for m > 0. 

On the basis of (4.1) we can calculate the quantity 

We introduce the operators 

(4.2) 

Z,@, cl) =k,l,[h p; v(r)] +k,{2cosn?l,[~, p; ‘r(@l--2[k P; ‘r(r)]) 

kl = - ~~$)-sin@, k klr (PI -- a- 2nk 
(4.3) 

If f (r) = z=,,th e integrals (4.2) are hypergeometric. Carrying out the substitution 
‘F = ht and correspondingly % = p - (p - 5) t, we find 

Ji ]A, p; ?] = B(1 + a, - p)pph"-pF(-f%&- 2p; 1 -p f&i A&) 

I,& p; z"] = B(--, - ~)p=F(--a, - 0; - 28; 1 --h/P) = (4.4) 

= B(f3 -u&t - p)pPrPF(- p,ct - 2p; 1 - p +a; h/p) + 

+B(a- p, - P) paF (- P, - a; 1 + P - a; h/p) = 

= sinnacsc [n (a - @] I, [h, IL; z”] + B (a - P, - 8) pa [i + O(GJI 

Let q” (T) be bounded and integrable in the interval (0, 1); then for --‘Is < fi < U 
we obtain after simple transformations 

The relations (4.4) and (4.5) show that li[h, CL; y (v) ] (i = 1, 2) is continuous and 
bounded in the region D- except for the characteristic A = 0, where it tends to infinity 

as ha. For a = 29 we have 

sin na csc ]x(a - B)] = 2 cos aq3 

Therefore the expression in parentheses in Eq, (4.4) contains no terms with negative 

powers of h, and is a continuous bounded function in the entire region D-. 
Thus if v (x) is a continuous bounded function in the interval [O. 11. 2, (h, i.~) is 

continuous and bounded in D-,including the boundaries. 
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Let y = 0 (h = p = XT) and 2 

T (z) = 

A. A. Ore1 

(A, p) = z (3. Then Eq. (4.1) assumes the form 

ksDzP-l v (z) + G (z) (4.6) 

k, = 2ksin n/3l? (1 - 28), 

6, Reduction of boundary-value problem to ringulrr lnta8trl 
aqurtlon. Comparing the expression for r (x) -from Eqs. (4.6) and (3.9), and also 
taking account of the condition (2.4). we obtain an equation for the determination of 

v (3 
P% (x) + k, “s” v (t) 15 - t p dt = k,ql (x) (5.1) 

-02 

We apply the operator Dl-sb to the relation (5.1). Taking account of the fact that 

DD-a f (z) = f (5) , and calculating the expression (cf. [ 133, Chapter V, Sect. 6) 

we obtain 

IF2$(t) \ 5 - t I-2b dt = ntg*p f(x) + -L--~(~)l-2p +gg 
r (2p) 

a a 

,v (5) + “+r (+)‘-” +$ = g (5) 
--m 

where 

h= co9 Irp 

Jt(agnP+ainnp) ’ g (5) = pPflcp (5), 

(5.2) 

We set v(z) = z2sx (x) and g (z) = xssf (x), then by virtue of the periodicity 
of the function v (x) tie obtain from (5.2) 

Thus the solution of the boundary-value problem (2.2), (2.3). (2.5) is constructed if 
we succeed in finding a function x (x) that satisfies the singular integral equation (5.3), 
with kernel of Cauchy type. We will solve Eq. (5.3) by the method proposed in Cl43 for 
the case when (2.2) is the Tricomi equation (p = l/s). We write Eq, (5.3) in the form 

1 

x(x) +h ji(t)Ko(G t)dt = F(X) (54 
0 

F(t) =f(X) - h i x(4 AK (2, t)dt, 
‘0 

AK (x, t) = K (x, t) - K. (x, t) 
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Ko(xp t, = i (2,+,+, + 2,+:-J 
?I=--oD 

Using the expansion of ctg z in elementary fractions, we represent 

KJ (5, r) = r/arc [ctg llsn (t - 2) + ctg llsn (t + z) I 

= sin2 
( 

+ t - sin2 + x )-l-$(sins+ tj 

Substitution of the variables 

y = sin2 f x, z = sins +t, x (5) = P (!I), r (z) = 9 (Y) (5.5) 

permits (5.4) to be reduced to the characteristic equation 

(5.6) 

Applying the theory of singular integral equations jJ53, we write the solution of equation 

(5.6) 

Ir (Y) = coas fie 
1 

9 (Y) - + Ay-q - y)e (5.7) 
0 

8 = - rc-l arctg nh = 1/4 (2/3 - sgn p), 

Restoring the previous variables (5.5) we obtain 

A = const 

X(X)=N[F(X)]=COS2d F(X)--h C f (:,“;;,n: )” K, (5, t) r (t) d”l (5.8) 
0 

The constant A from Eq. (5.7) is here chosen equal to zero in order that Y (z) be inte- 
grable in the interval [0, 1-J. 

We introduce the operator 

P [X(X)] = f (5) - h 5 X (t) M (5, t) dt (5.9) 
0 

Then the relation (5.8) is written in the form 

x (5) = N P Lx (x)11 (5.10) 

From (5.10) we can find a Fredholm equation of the second kind for X (X) 

(5.11) 
x (4 + h 5 x(t) r (3, t) dt = N if (41 

I? (x, t) = N [AK (x, t)] : 

= cos2 ne 
C 
AK (x, t) - h K, (x, z) AK (~9 t) dr) 

The kernel r (5, t) has a complicated structure, so we determine X (2) by applying a 
method of successive approximations. We determine the successive functions 

{Xn wn=1 (xn(4Eb(O* 1)) 

by means of the relations [14] 

r~(~)=N[P[Oll=N[f(x)l, ~,,(x)=N[P[~n_~(x)l] (n=2,3...) (5.12) 
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It can be shown that the sequence (5.12) converges to the solution of Eq. (5.11). From 
functional analysis [ 163 it is known that for the convergence of the sequence { Xn (CC) >?=t 
it is necessary and sufficient that 

lim Ilx?+) -x7&#=o 
‘n, m-+02 

Here 11 f (Z) 11 is the norm of the function f(s) 

We form the expression 

Ilf~4ll= [/f’(t)dt]c 

Ix,@> - X7+1 k> = - h J [Xn-1 (t) - t-2 @)I r (XI q d.f = 
0 

= - ANj. [x+1(t) - ~,,_~(t)l AK@, t)dt 
Hence 0 

11 X, (2) - h-1 (4 II& a il L-1 (4 - h-2 (4 1 S an--l II Xl (4 II (5.13) 
where 

~=l~lIlw~lII max IAK(fr,t)I 
oa, f<l 

(5.14) 

Assuming for definiteness that n > m, we find 

Using (5.14) and (5.13) we can obtain the bound 

11 x, (2) - ^IGn-1 (4 II G 2 ll Xl (4 II 
Thus convergence of the sequence (X, (z)>gr is proved if we show that U < 1. 

From Eq. (5.8) we have 

N[II =cos%B[1 -“~(~)YC&* t)&] = 

The singular integral in the last expression is tabulated (see [17], Eq. 3.228.1). Knowing 
the function N [I], we calculated its norm 

II N [II I( = co.9 ne 1 (tgtP,:t)‘B]l’* = [s 
cosd 

(cos 2n@‘/ 
(5.4 6) 

We consider the expression 

AK@, t) 

It is not difficult to convince oneself that AK (2, 8) is a continuous bounded function 
in the square 0 < x, t< 1, and also AR (x,0) = AK (z, 1) = 0, and 1 AK (x, t)l 
attains its maximum on the line z = 1 at the point 1 = 1 



problems for plane uansonic gas flow 463 

maxIAK(Z1t)I=!~IAK(1,t)I=41P[, ogx, t<i (5.17) 
ogx.t<1 4 

Equations (5.15). (5.16) and (5.17) permit calculation of the quantity a 

a = 4 I A$ \ tczsy$, = 2 (1 - 40) sin *e x (co* 27ce)“a. ’ 
0 < 0 & ‘Ia 

From the last relation it is easy to verify that a < 1. Consequently, the sequence (5.12) 
converges to the solution of Eq. (5.11). 

In the fast approximation for v (z) we have the expression 

VI(X) = cos*ne I g (5) - ~i(~)“(:~:~2)“~s~_(t-x) + 
0 

+ ctf3 -+- (t + 4-j g (4 dt} a = p-‘/*sgnp (5.18) 

For 0 < p < ‘1s the function v1 (x) is infinite of order l/s - p at the point x = 1. 

In the case --1/s < p < 0 we have 

g (z) = pP” q (5) = P.D l-@ [O (x) - G (x)] = p[ D+D (x) - .w Y(x)] 

Using the equation 

0’ (0) 
Paa@ (x1 = r (i + 23) 

z”B + P-s%D- (5) 

and the relation (4.5). we obtain 

g W = r (i : 2g> 
[W (0) - 29’ (O)] zsp + 0 (xl’@) (5.19) 

Thus for g (z) to be bounded at the point x = 0, the condition must be satisfied that 

0’ (0) - 2qI’ (0) = 0 (5.20) 

The quantity 0’ (0) is given by Eq. (3.10). The singular integral in (5.16) can, for 
- l/s < j3 ( 0 , be expressed in the form 

it is bounded at the point x = 0 if 

$i ) Pb tg+t p-“z g (t). dt = 0 (5.21) 

Thus if the boundary values (2.3) satisfy the conditions (5.20) and (5.21). then v (z) E 
E C[O, 11. From Eq, (4.3) it follows that in this case the function 2, (x, y) is bounded 
in the region of solution of the problem, Consequently, the quantity &J is continuous 

and bounded in the flow region. 
The relations (5.20) and (5.21) serve to determine the quantity 6q or 6~. At the 

same time they impose no restrictions on the form of the boundary es, since the latter 

is determined to within a shift relative to dp in the direction of the x-axis. In other 
words, 6n = 6n*(x + e). The constant e is determined together with 6q or 6c from 

the conditions (5.2 0) and (5.21). 
The author thanks S. V. Falkovich for guidance and continual interest. 
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